	[image: image1.wmf]
	VoteCal: Statewide Voter Registration System

<Use Case: UC04.14.01 / Process Voter Record Update Batch>

	
	VoteCal Statewide Voter Registration System Project

<Use Case: UC04.14.01 / Process Voter Record Update Batch>

Use Case: UC04.14.01
/ Process Voter Record Update Batch

	Attribute
	Details

	System Requirements:
	
S17.3 VoteCal must provide the ability to import and apply the voting precinct assignment for each registered voter for a given election from the independent county EMS.

S21.6 VoteCal must provide the ability to accept and apply batch updates of voter registration data from independent counties for specific global data updates (e.g., reassigning home precincts) after authorization by SOS administrators.

	Description:
	The purpose of this use case is to enable the VoteCal batch data exchange serviceto extract Voter Record Update records from the local EMS and send it to VoteCal, where it is processed. This is done in order
 to synchronize a large number of voter records with VoteCal at one time.

	Actors:
	VoteCal EMS Batch Data Exchange Service (DES)

	Trigger:
	A local jurisdiction has made a change affecting a large number of voters in a manner in which the changes were not propagated to VoteCal through the EMS Integration Web Service, and has notified the SOS that the batch data is ready to be uploaded. This is not a regularly scheduled batch. The following is an example of a situationthat might require this batch approach:

· A jurisdiction has re-assigned precincts and must update a large number of their registered voter records.

	System:
	VoteCal EMS Batch Data Exchange Interface (DEI)

	Preconditions:
	· A large number of voter records have been updated at the County/EMS level and have not been transactionally synchronized to VoteCal.

· Global preconditions apply.

	Post conditions:
	· Voter records are updated according to the changes prescribed in the batch.

· Global post conditions apply.

	Normal Flow:
	1. DES
 checks for pending jobs with a web service call.

2. DEI returns a request to run a Voter Record Update Batch.

3. DES begins the Voter Record Update Batch Creation Job.

3.1. DES extracts the necessary data with from the local EMS database, including globally updated voter registration data and voting precinct assignment for each registered voter for a given election from an independent county EMS
.

3.2. DES creates a Voter Record Update Batch File with the extracted data.

3.3. DES uploads the file to the DEI

4. DEI processes the file received.

4.1. DEI calls upon VoteCal data translation and filtering function to translate/transform each record field or reject the entire record if a record field does not meet filter criteria according to configured rules.

4.2. DEI captures any detected changes for each voter record upon successful validation. All changes are applied. DEI
 creates an EMS Message Queue item for each record to notify the county which voter records were successfully updated.

4.3. DEI creates an EMS Message Queue item for each record that fails validation so that the local EMS may take appropriate action. The following are reasons for failure
:

4.3.1. State Update Pending: indicates that changes have been made in VoteCal that have not yet been applied to the local system and there is now a concurrency problem.

4.3.2. Voter Does Not Belong to Jurisdiction: indicates that this voter was found in VoteCal, but does not belong to this jurisdiction.

4.3.3. Voter Pending Transfer: indicates that the voter was found in VoteCal but has a pending transfer condition.

4.3.4. Failed Validation: indicates that there is missing or incorrect data.

	Alternate Flows:
	N/A

	Exceptions:
	N/A

	Includes:
	N/A

	Business Rules:
	N/A

	Frequency of Use:
	TBD

	Assumptions:
	N/A

	Notes and Issues:
	
N/A

Revision History

	Date
	Document

Version
	Document Revision

Description
	Revision Author

	01/05/2010
	0.1
	Initial Draft
	Chad Hoffman

	01/12/2010
	0.2
	Document Revisions
	Chad Hoffman

	01/25/2010
	0.3
	Document Revisions
	Chad Hoffman

	01/27/2010
	1.0
	Minor edits and release to client.
	Maureen Lyon

	02/05/2010
	1.1
	Incorporate Client Feedback
	Chad Hoffman

	02/05/2010
	1.2
	Submit to client for review
	Maureen Lyon

	02/08/2010
	1.3
	Incorporate Client Feedback
	Victor Vergara

	03/19/2010
	1.4
	Incorporate Client Feedback from Discovery Sessions
	Kimanh Nguyen / Kalyn Farris

	03/25/2010
	1.5
	QA and Release to Client for Review
	Don Westfall

	mm/dd/yyyy
	1.x
	Update with client feedback
	Only if needed

	mm/dd/yyyy
	2.0
	Submit to Client for Review (Deliverable 2.3 Draft)
	{Name}

	mm/dd/yyyy
	2.1
	Incorporate Client Feedback
	{Name}

	mm/dd/yyyy
	2.2
	Submit to Client for Approval (Deliverable 2.3 Final)
	{Name}

�PAGE \# "'Page: '#'�'" ��Reviewed – no comments to add

�Paula: What order?

�Art: Add EMS as an actor?

�Art: Since a local jurisdiction is notifying the SOS of the need to upload the batch data, sholdn’t the local jurisdiction be an actor?

I am surprised that a local jurisdiction plays here. I would think it would be the county user who would be notifying SOS.

[BMc] Perhaps we can clarify the language to better communicate intent. I don’t see county user’s as a direct actor in this UC. In this situation I would expect a ‘county user’ to call (email) SOS to notify us of the mass change and SOS admins would configure the system to launch the this batch job at an appropriate time.(I would not want counties to have the capability to directly schedule a batch job without knowledge of or regard to other scheduled processes.)

�Art: Why would this occur? Shouldn’t our normal processes have caught this?

 I think we need to explain this a bit further.

[BMc] The trigger example is a perfect case of this. It is typically conducted in a sandbox environment within the EMS, then moved to the production data all at once when complete.

�Art: How did the pending jobs queue get updated tto reflect that this large batch job is waiting to be processed?

[BMc] Isn’t this handled in UC05.20.01?

�I don’t understand why this was added here. Can you please explain the reasoning for this.

�Why would you reject the entire record if a single field fails validation (which could disenfranchise a voter)? Wouldn’t this depend on the field and the nature of the error? Why wouldn’t you handle this in the identical manner for transaction voter registration updates that fail a validation?

�Art: This should be step 4.3

�Is this supposed to be an exhaustive list? What about the normal validation for fatal and non-fatal errors? What about normal processing steps for registration updates, such as IDV & UID assignment, or flagging record for VNC generation.?

�Paula: This step is an alternative flow to 4.2

�Art: I agree, 4.3 should be an alternate flow ….or perhaps it belongs in the Exceptions block.

	03/30/2010

Version: 1.5
	Page 1

